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EXPERIMENTAL STUDY OF SURFACE SOLVATION IN DEVELOPING

A MATHEMATICAL THEORY OF STABLE LYOPHILIC COLLOIDS1

(Anomalous properties of thin liquid layers. V) 2

B. Deryagin and M. Kusakov

Bulletin of the Academy of Sciences USSR, Section of

Mathematical and Natural Sciences, IM lll9-1152

Current concepts of surface and colloidal particle

solvation ae critically reviewed# as are methods for

studying such phenomena. This is followed by a now

quantitative procedure for determining solvation,

which relates it to the disjoining effect of thin

layers of liquids discovered and studied in previous

reports of this series.

In the present report, a new, more convenient method

is described for measuring the thickness and disjoining

effect of thin layers, for the case where these are

boundary layers between a lyophilic solid and a gas

bubble.

Further observations are reported on the nonequi-

librim state of such wetting film.

Experimental data are given which establish an

equation for the state of a solvate layer expressing

the equilibrium pressure (dis joining action) of this

layer as a function of layer thickness, for both
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aqueous and nonaqueous media.

The effect of electrolytes on the thickness h of

a solvate film is described, as well as the effect of

surface-active substances on a vaseline oil film

solvating the surface of steel.

A theory of micelle interaction is given which

takes account of the disjoining effect produced by

thin layers of the dispersion medium separating

adjacent surfaces.

Finally, these last calculations are used to develop

a theory of slow coagulation and stability of colloids

in disperse systems.

1. Introduction

In surface solvation of colloidal particles, as it is generally

understood, such particles are 'bound' by the surfaces of adjoining

layers in a liquid dispersion medium. This concept is used consistently

to explain the more important properties of lyophilic colloids - among

these, so basic a property as aggregative stability (Ref. 1) in the

sol state.

The solvation concept ths appears to be one of major significance,

yet it still lacks a firm basis, in rigorously verified experimental

observations. Moreover, it has never been given a precise physical

definition and therefore remains vague. In fact, different authors

have attributed widely differing meanings to this concept.

If the situation is unsatisfactory, the principal reason why this is

so, as we see it, is that up to the present time there has been practi-

cally no attempt made tO use a direct experimental approach, in a study

concerned specifically with the properties of solvate layers formed on
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macrosurfaces. As a result, there has been a tendency to obtain infor-

nation regarding these properties by studying the general, rather than

specific .behavior of colloidal systems.

The situation Is reversed, and far more satisfactory, in electro-

kinetics. It is mainly for this reason that the properties of lyophobio

colloids have been successfuly interpreted in the light of eleotrokine-

tic phenomena.

The entire vast literature on salvation of colloids indicates that

studying lyophilic colloidal systems as a whole does not lead to any

unambiguous and reasonably accurate conclusions as regards thickness,

structure and properties of solvate layers. Such conclusions could not

be derived from theory alone, even where an adequate theoretical basis

exists. An Einstein formula is available, to cite one instance, for

estimating the quantity of dispersion medium participating In the

motion of particles from measurements of sol viscosity. Yet in 25 years

since the first attempts In this direction not enough definitive data

have been obtained on the thickness of solvate layers In lyophilic

systems.

The seo can be said of the various methods for studying bound

water in hydrophilic colloids (Ref. 3). If the results of such studies

are difficult to interpret, the principal hindrance is lack of infor-

mation. The total surface of dispersed particles, in lyophilic systems,

is usually unknown; nor do we know the exact proportion of the liquid

bound inside the uLicelles. Still, studies of bound water (also, of vis-

cosity) in lyophilic systems give valuable indications as to the nature

of changes in volumetric properties of liquids taking place in the

solvate layers of a mioelle-bound dispersion medium.

Nevertheless, the study of colloids, especially the lyophIls, calls

with increasing urgency for exact information on the thickness and
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properties of solvate layers. Such information is most essential in

developing a quantitative theory of colloid stability. These much

needed data have not been made available, however, nor has the very

concept of solvation been clearly defined. As a consequence, attempts

at explaining some of the basic properties, above all the stability of

colloids, amount to little more than vague verbiage, for the most part

devoid of exact physical meaning. A case in point is the concept first

proposed by Bungenberg de Jong (Ref. !), and later so generally accep-

ted that it has been introduced into some textbooks on colloidal

chemistry (Ref. 5). According to de Jong, the diffusivity, or washout#

of a solvate transition layer can be the sole factor determining the

aggregative stability of lyophilic systems, since it eliminates adhe-

sive forces. No sound basis for this proposition has ever been sugges-

ted by anyone. The idea, rather nebulous to begin with, is in fact

incorrect, as will be shown below (see Section 8). A simple mathemati-

cal computation makes it evident that the washout of a solvate layer,

far from contributing to the stability of a colloidal (or a dispersed)

system, will in effect lower this property.

One more rather common misconception should be cleared up, if our

problem is to be correctly posed, before we go on to the description of

methods developed by us for investigating solvate layers. Different

investigators have taken one or another property as the basis for

characterizing solvate layers and their thickness. As a result, they

have arrived at widely divergent thickness values. And this is not all.

The exact meaning of 'thickness' should be more closely defined. It

would seem more logical, in this case, to speak not of solvation in

general but of "specific properties* and manifestations characterizing

solvate layers, which depend on the surface upon which these layers

have been formed. It must be kept in mind (Ref. 6) that the effect of



separation surface may vary from one property to another, in its scope

of penetration into the depth or the liquid; hence, different proper-

ties can be localized in layers of unequal thickness. Finally, the

thickness itself depends on the particular criterion (degree of deviat-

ion) used to determine whether a given portion of the liquid belongs to

the solvate layer. In other words, the extent to which some property

deviates from normal (corresponding to the entire volume of liquid).

The most important property of colloidal systems Is stability -- an

indispensable condition of their very existence. Therefore the particu-

lar property that determines the aggregative stability of such systems

is the logical choice for the basic criterion characterizing a solvate

layer.

2. Cleavage as the criterion of solvation

What property is that?

We shall make a basic assumption (Ref. 7) that in a general case the

stabilizing effect of solvate layers is due to cleavage - or 'disjoining

action,'as one of us called it (Ref. 8) - first discovered and later

studied by B. Deryagin and B. Obukhov (Ref. 9).

This effect consists in the following. The solvate layers of two

surfaces (either flat or convex, as in colloidal micelles) come in

contact and are superimposed. On sufficiently close contact a pressure

develops, which is a single valued function of the distance between thq

these surfaces, and not only opposes closer contact but actually tends

to move them farther apart. Thermodynamically, the cleaving (disjoining)

pressure is identified with the state of equilibrium of the liquid

layer confined between the above two surfaces, being drawn together in

an infinitely slow reversible process. The cleavage, therefore, has

nothing in common with the resistance to the thinning of the liquid

layer, which is due to viscosity, and becomes apparent as thi liquid

-5-
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flows out of the clearance between the two surfaces. The cleavage is

caused by molecular forces of attraction acting between the micellar

surfaces and the molecules of a solvate layer. This attraction exceeds

the molecular forces of attraction acting between mutually approaching

(micellar) surfaces.

It was shown earlier (Ref. 10) that, because of cleavage, the free

surface energy of a system in which thin layers are present will depend

on layer thickness. To be specific, it will increase as the equilibrium

thickness of these layers decreases.

Such an approach to solvation phenomena offers the following

advantages.

1) Its basic concept of disjoining action (cleavage) is both clearly

defined and quantitative (since the cleaving effect is interpreted as

a function of layer thickness).

2) It relates cleavage directly to the stability of colloidal

systems (as well as to their other important properties such as swell-

ing or peptization). This relationship, as will be shown in Sections 8

and 9, provides a basis for a quantitative mathematical theory of

stability and coagulation of colloids.

3) It makes possible direci quantitative measurements of cleavage

on macrosurfaces of any nature.

4) The cleaving action, corresponding to the equilibrium states,

can be treated thermodynamically. (This was verified directly in our

experiments with maorosurfaces).

5) The cleavage provides a measure of the intensity of molecular

attraction between the solvated and solvating phases. It follows that

our concept does not disagree with the comuonly accepted views on

solvation but rather develops these views, making them more precise.
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These assertions are further clarified and substantiated by the

following calculation. Let the free energy of a system.consisting of

two bodies, 1 and 2 (two micelles), and a dispersion medium 3 (Fig. 1),

be represented by a sum which is the total energy of all the mole-

cules in the system paired in every possible ocmbination. Each torm of

this am refers to a particular pair of molecules, expressing the

energy of their interaction. The latter will depend on the nature of

the two molecules and the distance separating them. On a similar

assumption is predicated the classic theory of capillarity developed

by Laplace and Gauss.

Let the molecules contained in the first body be denoted by as

those in the second body by b, and those of the dispersion medium by

s. It is obvious that the * molecules will occupy the portion of the

total volume of the system which remains after subtracting the volumes

1 and 2 of both bodies (micelles). This must be kept in mind when

computing the sum E. If this consideration is ignored and, in oalcu-

Fig. 1. Calculating particle interaction

in a dispersion medium

lating the energy of interaction for all molecules, the dispersion

medium is assumed to fill the entire volume of the system, a definite

error will result as additional torms are introduced into the sum

Under such an assumption, volume 1. for Instance, will be filled both

by the a molecules, which are actually found there, and by the a mole-

cules, present in the same concentration as in the dispersion sedium.
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(While consistent with Daltonts law, this is of course impossible in

the case of condensed phases, except in terms of purely formal reason-

ing).

The above error is however easily corrected, by introducing ficti-

tious molecules a' into volumes 1 and 2, in a concentration equal to

that of the a molecules. To these additional molecules a particular

property is attributed; namely, that the respective energies of inter-

action, for a * I or a a molecule with any other kind (a, b, a or at) -

the distances being equal - will differ only in sign. In other words,

the energy of a a molecule interaction with any other kind (including

a a t molecule) will remain the same in absolute value but will acquire

an opposite sign if the a molecule is replaced by a ca molecule. By

virtue of satisfying this condition, the introduction of fictitious

molecules c into volumes 1 and 2 will compensate for the above error.

The same condition also makes it possible to replace two interacting

c molecules by two c' molecules, keeping the same distance between them,

without changing either the amount of the sign of interaction energy.

The total free energy of the system can therefore be expressed as a

sum V'of interaction energies of all molecules. The latter are subdi-

vided into the following groups:

1) molecules a filling volume 1;

2) molecules b filling volume 2;

3) molecules a filling the entire volume of our system, including

volumes I and 2 and the dispersion medium;

Is) molecules c' filling volume 1;

5) molecules a' filling volume 2.

Lot us 3xamine portion E 12 of the free energy of the system that

will undergo a change when the position of bodies I and 2 relative to

each other is varied while their shapes remain the same. This portion

-8-



of the total energy can be identified as potential energy mutually

possessed by both bodies.

It is obvious that in order to obtain the mutual energy of th. two

bodies Z 12 it is necessary to discard those terms of the sun 12

that remain unchanged as the positions of bodies 1 and 2 vary. Among

these will be all terms expressing the energy of a molecules (3rd

group) interacting with one another.

Saimlarly, the sum of terms expressing the energy of all molecules

a (let group), or b (2nd group), Interacting with all a molecules (3rd

group) can be discarded, since this sum remains constant if the dis-

tance between body 1 (or 2) and the boundaries of the entire system

(separating the dispersion medium from the outer medium) remains at all

times sufficientll large as eompared with the radius of molecular

action. The only terms that will be retained are, in the first plaoes

those expressing the energy of all molecules a (1st group) interacting

with all b molecules (2nd group). We shall denote the aim of these

terms by

where the subscripts indicate the placement of molecules (volume 1 or

2) and the superscripts designate the kind of molecules filling the

volumes denoted by subscripts. In the second place, the sum 12 will

include terms expressing the energy of molecules 0 s of the 4th groups

interacting with molecules a' of the 5th group. The sum of these terms

will be denoted by

because the energy of interaction does not change when molecules of

and of and replaced by o and a.



Also included will be a sum of terms expressing the interaction of

of molecules a (lot group) with molecules of (5th group), equal to

and, finally, an analogous sum of terms expressing the interaction Of

molecules b (2nd group) with molecules o' (4th group):

The interaction energy of bodies 1 and 2 in the dispersion medium

is thus equal to

In the case where molecules a and b are identical, the following

equality holds:

N= 'N" 0 (2)

Equation (2) is self-evident when bodies 1 and 2 are of the same

shape and are situated symmetrically relative to some plane of symmetry.

If this condition is not satisfied, then each body 1 and 2 can be

subdivided into elementary volumes AT,=A, , which will be equal to

each other irrespective of the particular body to which they are

assigned (Fig. 1).

The energy of interaction between any elementary volume of the first

body with any elementary volume of the second body will obviously show

no variation if molecules a and a exchange place in the two volumes. In

other words, this energy will not depend on which body is filled by

molecules a and which by o molecules. It follows that the sum of inter-

action energies of these elementary volumes, which is equal to

-10-



will not change if the superscripts, i.e., the molecules, are shifted

about. This is consistent with equation (2).

Thus, the interaction energy of two bodies .(miclles) which have an

identical composition and are immersed in a dispersion medium is equal

to

% -I %-lam 2 (3); •

Expression (3) can be written in the form of a sextuple integral

taken over the voumes of both micelles 1 and 2:

where/a andJe are the molar concentrations (densities) of the

micellar and the dispersion medium, respectively; ua,(rl2) is the

interaction energy of molecules a and o separated by a distance r12;

Ua(rl2) , respectively u., is the interaction energy between two a or a
molecules separated by a distance r12; d7"1 and d; d7 ad d?'-areelementary

values of the two micelles; N is the Avogadro number.

Identifying molecular interaction with mutual attractions we shall

regard values Uas Uao and UO as negative. If the absolute value of

Use is sufficiently large, expression (3') may then become positive;

i.e., some energy will have to be expended in order for the micelles,

initially separated from each other, to draw together. The existence

of cleavage (disjoining action) will thus be demonstrated, in this

particular case.

The cleaving action is therefore seen to be related to the strong

attraction between the micellar molecules and those filling the

-11-



dijporsion medium. According to conventional views, this attraction is

described as a contributing, and sometimes as a major, factor in the

solvation of micelles.

Should molecules a and a exchange their functions - as in phase

transition characteristic of emulsions - expression (3) will not change.

It follows, to cite one example, that interaction of oil particles in

water will be the same as in an oily dispersion medium, although this

conclusion is not borne out by general observations on emulsions. The

discrepancy can however be ascribed to our basic assumption - accepted

also by the classic theory of capillarity - which, as pointed out above,

substantially limits the general applicability of our calculations. The

latter are cited here mainly because they reveal a close relationship

and the conventional concept of solvation.

Resistance to tangential (shear) stresses is often treated as the

basic property of solvate layers. It is important in soi viscosity and

seems no less essential for the mechanical properties of gels. It is

not however a basic property of choice, since it cannot be associated

with the many advantages indicated above.

We shall consequently characterize solvate layers by a function

expressing the effect of their thickness on disjoining pressure.

3. Cleavage measurement methods

In previous reports on disjoining action (Ref. 10, 9), a method of

investigating this effect was described, for the case where a liquid

layer is enclosed between two solid surfaces.

The procedure, however, involved a number of difficulties which

complicated the work and limited the scope of application. (The surfa-

cas had to be made perfectly flat as well as protected from dust

particles, and the like). These inconveniences suggested a need for a

simplified procedure. Such a method, it was found, could be developed

-12-



if cleavage studies were limited to the particular case of a liquid

layer bounded by a solid phase on one aide only and by a gaseous or

liquid phase on the other. We shall next describe this method, whish

proved both simple and convenient for use.

.

C

Fig. 2. Installation for Fig. 3. Free-bubble method used
measuring the thick- in measuring the thick-

ness of solvate layers noes of solvate layers

A thin plate (A) prepared from the material taken for investigation

-- for instance, glass -- was placed in a flat cell K (Fig. 2). The

ex mined surface had to be sufficiently smooth (as in blown glass) but

not necessarily perfectly flat.

An air bubble D was pressed against the surface of plate A. (If the

plate was opaque, the pressing was always done from above). A thin

transparent plate (B), with a projecting ring C glued onto it, was

usually employed for this purpose.

In many measurements performed on glass platelets or scalhs of mica,

the procedure was further simplified. A free air bubble was steered

toward the underside of a plate Immersed in a liquid, and finally

settled on it (Fig. 3). This method, however, had its disadvantages.

The flattening of the bubble surface in contact with the plate was

-13-



determined by the ejecting force, hence it could not be controlled in

any other way except by changing the dimensions of the released bubble.

With the aid of a microscope M interference bands were observed

(Pig. 2), in the shape of concentric rings running through a wetting

film. The film, formed by the liquid filling the cell, was located

between bubble D and plate A.

Fig. 4- Displacement of interference rings caused by
varying the wavelength of light incident upon
a thin film

Illumination was provided by a vertical microscope illuminator.

A Fuess monochromator E served as the source of light. The filament of

a 200-watt bulb L was projected onto the inlet slit of the monochroma-

tor.

It is well known that the position of interference bands (rings)

indicates only variations in the thickness of the layer producing the

interference; it gives no indications as to absolute thickness values.

The reason for this is that when the overall thickness of a layer is

changed by any (whole) number of half-waves, the position of interfe-

rence bands remains unchanged. By using a monochromator, however, we

were able to vary in a continuous manner the wavelength A of light

and, simultaneously, to observe a continuous variation of the inter-

ference pattern. The ambiguity of thickness measurement data could

thus be fully eliminated.

As a case in point (see Fig. 4), let it be assumed that by use of



the monochromator, a wavelength),A has been selected such that it

causes a dark Interferenoe band (one of the solid lines in Pig. i) to

pass through a point A at which the layer thickness h Is of interest to

us. Let the wavelength decrease continuously, and let this decrease be

accompanied by a continuous displacement of the intereference bands

(in Pig. 4 the bands are shifted to the right). The next dark band

will pass through the same point (i.e., the next darkening will occur)

when the wavelength of the illuminating rays becomes equal to/I . The

interference bands or, more exactly, rings produced by this wavelength

are represented in Fig. I as dotted lines.

We can then write:

2 ei~ (i.)

where m is some integer and n is the refraction index of the film.

Prom (4) we find, by eliminating ms

This method is most accurate when h is not too large. If the thick-

ness values are very minute, however, the procedure cannot be rigo-

rously followed. When nh is less than 0.5A, varying the wavelength

over the entire visible range or the spectrm will have no effect

beyond a single darkening.

It follows that one equation, at the most, can be derived, of

the form

2nh ti (+ 2.~(6)-#h



where m and h are unknown. The value m can be found, however, if we

first determine, as shown above, a thickness h' corresponding to some

other interference band, with a greater path difference, which passes

through a neighboring point of the film where the thickness in greater.

The value of h is then determined from the relationship

2n (h'- h)X 10 7)&M '

where &m is obviously greater by unity than the number of dark bands

located between the observed interference bands. It will be noted that

the band pattern alone, when observed at some one definite wavelength,

does not yet indicate which areas of the field have greater thickness.

Hence the ambiguity in determining the sign of differentials (h' - h)

or bm. This uncertainty can however be eliminated, by varying the

wavelength of the illuminating rays; as the wavelength decreases the

bands will shift in the direction of decreasing thickness. The same

caracteristic enables easy differentiation between the areas of maxi-

mum and minimum thickness.

In most of our experiments, the principal objective was to measure

the film thickness in areas of its minimum (or maximum) values. The

operation, however, involved certain dificculties.

When the wavelength is varied, the areas of average film thickness

must be distinguished from those of extreme (high or low) values. In

the first case interference bands neither appear nor disappear but move

steadily past the area, while in the second case they appear or vanish,

but do not shift. Accordingly, in case I (see Fig. 4) it is possible,

by varying the wavelength, to bring the middle, hence the darkest,

portion of the band into coincidence with a given point, In case 2, on

the other hand, any given point, encircled by concentric lewtonian

interference rings, will invariably coincide with the center of a

-16-



dark circle. (This holds for a wide range of wavelengths). But the

interference minimum of light intensity (equation 6 holds only for

this minimum) will coincide with the dark center only when the wavq-

length assumes a certain definite value (sometimes a range of values).

It follows that the unknown wavelength cannot be determined without

measuring light intensity (by a highly specialized photometric proco-

dure). In our measurements, the minimal film thickness involved not a

single point but a circle-shaped area (.see the photograph of an inter-

ference pattern observed in one of our experiments: Fig. 10).. This

made the problem easier, as will be shown below, in describing one of

our techniques used effectively in most cases (barring a few particu-

lar thicknesses).

Fig. 5. Interference pattern Fig. 6. Interference pattern
obtained for the case obtained for the case

where the wavelength Is not where the wavelength becomes
equal. to the quadruple thick- equal to the quadruple thick-
ness of the wetting fil. in noes of the film. The 'border'
its central portion. Part of is no longer visible.
the 'border' is visible in
the photograph.

Let the unknown minimal layer thickness (when multiplied by the

index of refraction) be equal to 0.12,M. For any wavelength

exceeding 0 .48A , the semi-dark center area corresponding to the
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ninimurt thickness will then be encircled by a much darker 'border'. In

it will be located points corresponding to a thickness of ,A A, or

the minimum of light intensity (see Fig. 5). Obviously, by reducing

the wavelength until the darker border has vanished, we shall achieve

coincidence of the minimum light intensity with the minimum thickness

(Fig. 6).

This, evidently, will take place when the wavelength has the

value

As--- 0.48

Conversely, having determined this wavelength, we can calculate the

minimum film thickness by use of formula

h =-2i (8)
*4S6

This method is applicable when

Equally effective, in this case, is the analogous 'Light border'

method. If the adjustment for border disappearance gives a wavelength

A o , we have

29

When

neither method can be used. However, in the particular case where

j , the following technique is resorted to. A wavelength

" is selected at which the interference picture will be equally

bright in the center and along the edges, where interference bands

are indistinguishable, due to coalescence. From the thoery of inter-

ference it follows that, in such case

-18-



x_~. (9)

None of these methods, needless to say, is particularly accurate.

For hIgh-accuracy data, precise photometric measurements must be taken

to determine the relationship between light intensities in the center

and those in the areas of maximu- and minimum brightness. To this end

we now use objective microphotometry performed with the aid of a

selenium photocell. As far back as 1914, Wells (Ref. 12) measured the

thickness of extremely thin films (such as black soap-bubble spots) by

(visual) photometry of rays reflected following interference.

Equilibrium thickness values for various specific pressures were

obtained in a simpler way, by taking bubbles of different radii and

measuring for thickness the wetting layers separating these different

bubbles from a solid surface. Pressure P which the layers are able to

withstand, since it is counterbalanced by their disjoining action, can

be calculated by applying the first law of Laplace. For nearly spheri-

cal, only slightly deformed bubbles, the following formula can be used

P(10)

where r is the the bubble radius and d is surface tension.

The separation surface, in the system 'solvate wetting layer -

bubble' is in fact a flat one, therefore the pressures acting upon it

from either side are equal. Thus, P in equation (10) indicates siunl-

taneously by how much the pressure in a solvate layer exceeds the

pressure in the adjacent volume of liquid. This, essentially, is the

measure of a disjoining action as additional pressure by a thin layer,

existing in violation of the laws of hydrostatics (law of Pascal).

In our reasoning, we could also follow another, simpler line.

-19-



A solvate layer can withstand, without being squeezed out, the bubble

pressure greater by the value P than the pressure of the adjacent

volume of liquid. This additional pressure can therefore be identified

with P.

Thus, by performing measurements on bubbles varying in size, we

were able to plot a graph showing the dependence of P on h, for the

case of a (nearly) plane-parallel solvate layer.

4. Observation on the nonequilibrium state of a wetting film

Our attempts to obtain a solvate layer in the state of equilibrii2

by the above method were at first hampered by an interesting phenome-

non that merits discussion. When a bubble was presied against a solid

surface, this had to be done slowly and gradually. The condition was

not always observed. In such cases the flattened area of the bubble

was sometimes large enough to produce a solvate layer profile as seen

in Fig. 7 (see insert). Here a photograph of the interference picture

obtained for such a case is shown and beneath it, the profile (verti-

cal section) of a solvate layer plotted on the basis of this picture.

An unambiguous interpretation of such interference patterns was made

possible by applying the following rule: as the wavelength decreases

the interference bands (rings) are seen to shift from areas of grea-

ter thickness to those of lesser thickness of the solvate layer.

New rings appear where the thickness is maximum and vanish where

it is minimum.

The area of minimal thickness is seen to be located not in the

center but at some distance from it, encircling the central point.

A portion of the liquid layer contained inside this ring had a thick-

ness greater than the equilibrium thickness of the solvate layer --

that is, the thickness value corresponding to the pressure inside the

bubble. The thinning of this portion of the liquid proceeded quite
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slowly, however, apparently because of the strong viscosity effect

hindering the liquid flow through the narrowest areas. (Viscosity, in

this case, may have been higher than normal, due to the minute thick-

ness of the layer: see Ret. 13).

The ring-shaped area of minimal layer thickness opposing the flow of

liquid was referred to, in our experiments, as the barrier.

The mechanism of barrier formation apparently consists in the follo-

wing. Consider the case of a bubble acted upon by a force N (such as

the force of ejection causing the bubble to rise in a liquid). Let us.

assume that the bubble moves as a unit and, on striking a solid sur-

face, becomes partially flattened and stops. The conditions for the

outflow of a thin liquid layer between the bubble and the solid sur-

face are most favorable along the circumference bounding the flattened

area (Fig. 7), since the free volume is very close. The liquid layer,

thinning out rapidly along the periphery, reaches the equilibriuma

thickness and forms a barrier. As to the layer contained inside the

barier, its location, as explained above, is less favorable for an

outflow. Consequently , it retains for a long time its original thick-

ness, which is considerably greater than the equilibrium thickness.

Fig. 8. "Barrier" formation; the wetting
film is in a state of nonequilibrium.
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In the light of available observations, the proposed theory of

barrier formation appears to be correct. The process is confined to

the boundaries of circular flattened areas, which have a radius p.

Such ring-shaped barriers are formed for bubbles of different radii r,

scattered freely about the lower surface of a transparent plate (Fig.

8). The fi values measured with the aid of the interference picture

are shown to agree with those obtained by calculation.

To calculate it is sufficient to write down the conditions under

which the force of ejection will counterbalance the reaction of a

nearly flat solvate layer (Fig. 8) to the capillary pressure 1 acting

upon this layer from inside the bubble. (It is necessary to keep in

mind that the curvature of small bubbles is only slightly affected by

deformation). We thnus obtain:

4"(11

where d is the difference between the respective densities ot the

liquid and the bubble, and g is the acceleration of the force of

gravity.

From eq. (8) we have:

2d9 (12)P_.*.y ,,..(la

In the graph (Fig. 9) the observed -f values, for bubbles of

dif.'erent radii r, are laid off along the ordinate and the corres-

ponding r 2 values, along the abscissa.

The experimental points fall exactly, or nearly so, on a theoreti-

cal curve plotted with the aid of equation (12), into which the follo-
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ing given values have been substituted:

d -1.0; g -981; d -73.

The coincidence of the experimental with the calculated curve (12)

demonstratts that barrier formation is in effect confined to the peri-

phery of the solvate film, where the surface of the bubble contacts

the solid surface. At the same time, direct examination of the inter-

ference pattern (see photograph in Fig. 7a) reveals that beyond the

barrier the thickness of the liquid layer shows a steep Increase.

AN

Fig. 9. Dependence of the wetting
film radius (calculated line-)
and the 'barrier' radius (ex-
perimental points) on the
bubble radius

The formation of a barrier can nevertheless be avoided. If the

bubble is slowly pressed against surface A, with the aid of an auxi-

liary plate B (Fig. 2), no barrier will form. What we observe,

instead, is the emergence of a solvate layer of uniform thickness,

which will remain unchanges for as long as 21t hours. This thickness is

reproducible, with high accuracy, and apparently characterizes a sol-

vate layer at equilibrium with pressure P acting upon it.

In Fig. 10 (see insert) is reproduced one of the many photographs

of such an equilibrium layer, obtained in our experiments. The photo-
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graph shows clearly that the layer thickness is commensurate with the

light wavelength. If it were much smaller, the central portion of the

picture would in fact appear bright rather than dark.

In the light of this conclusive visual proof, it can be asserted

that the radius of action, for solid surfaces, is not as short as it

is often assume to be. (The latter view Is based on the existence of

monomolecular adsorption layers).

These fundamental findings are of paramount importance for scienti-

fic inquiry into molecular forces and surface phenomena.

5. Measurement data on equilibrium thickness of solvate layers
In these measurements, special care was taken to keep the surfaces

clean and free of dust. This accounts, in part, for the choice of

observation material. Basic measurements were done on mica and glass.

Mica surfaces could be made perfectly clean, because the cleaving was

done along the cleavage plane, under water. The glass, surfaces, melted

Just before use, were obtained from freshly blown glass bubbles. (A

slight correction for surface curvature was introduced into equation

10).

4 .4
r,. l;i,_

A'.A

-4 ..." 4 . .,.

Fig. 11. Isotherm of equation of Fig. 12. Isotherm of equation of
state of solvate layer. state of solvate layer.
Water on mica. Water on glass.

-25-



Fig. 14~. DesolVating action of electrolytes. The
solvate layer Is ruptured and a wettinig
perimeter is formed.
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In most of our measurements, hydrogen bubbles were used, formed by

electrolysis inside the aquesous medium taken for study. Who air

bubbles were used Instead, this did not affect the results of measure-

ments, except where the solvate layer was *ruptured* and the solid

surface became dirty, due to contact with the gaseous phase (i.e., the

air bubble).

Double distilled water was always used for measurements.

The graphs in Figs. 11 and 12 demonstrated the dependence of P on

h, for double distilled water on mica (Fig. 11) and on glass (Fig. 12).

(The reaction was acid, due to the presence of carbon dioxide in the

water).

state~ of te solat laer

I ' . f ,. ) ,•

,A~.

Fig. 13. Effec t of adsorption layer on
the isotherm of equation of
state of the solvate layer.
Vaseline oil on steel.

A solvate layer was seen to form also when a glass-alcohol system

was applied. It was however too thin to be measured by our visual

procedures.

In Fig. 13 measurement data are given for the systems steel surface

- pure vaseline oil (solid line); steel surface - vaseline oil contain-

ing 1% dissolved oleic acid (dotted line); hexane (curve based on

experimental points).
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Of particular interest is the effect of electrolytes on the thick-

ness of solvate layers. In the case of monovalent cations the effect is

slight, as follows from results obtained for KCli

Concentration, moles per liter 1.0 0.1 O.01
Pressures, dynes per im2  400 400 400
Thickness of solvate layer, m 100 50 90

Multivalent cations such as A1Ci 3, even in low concentrations

(10-4 N), show strong dehydrating action. As a result, the thickness of

solvate layers is reduced to values below the limits of measurement by

our method. The contact angle too is changed from zero (pure water) to

values ranging 20 - 30. If the bubble is kept pressed against a glass

or mica surface for a certain length of time (varying for different

cases), a 'rupture' of the solvate layer develops whichaspreads very

rapidly. Complete wetting is confined eventually to a wetting perimeter

often shaped irregularly as a wavy ring (see photograph of interference

pattern obtained for this case: Fig. 14, insert).

6. Discussion of measurement errors

We shall now consider the possible (rather limited) criticism of our.

measurement technique, which gives for solid surfaces a radius of

action (ho0  1'5 cm) exceeding considerably the combined thickness of

several molecular layers.

It should be pointed out, to begin with, that the method described

in this report is superior to those previously used (Ref. 14) in that

it does not require perfectly flat surfaces, of the order of 1 em2 ,

but can be used with any sufficiently 'smooth' surface of a much

2 2smaller area, ranging I mm to 0.01 mm . It is easy to see, further-

more, that moderate surface curvature, which is much less than the

curvature of the bubble pressed against it, should not affect the

thickness of the solvate layer coating the surface. Occasionally,

-28-



however, the surface curvature is more pronounced. In such cases only,

the simultaneous effect of additional Laplacean pressure# exerted by

the curved surface separating the solvate layer from the air bubble,

may affect the layer thickness.

We have every reason to believe that the surfaces used in our expe-

riments were more than adeauate, particularly those obtained from

freshly melted glass or the cleavage planes of mica. On some rare occa-

sions, the mica surface in the field of observations had a minute flaw;-

which we called a Imicroterrace'. Such defects were immediately deteo-

ted, because of the distortions they produced in the interference

pattern of the solvato layer.

One of the objection which had to be considered in our old method

(Ref. l4) using two solid surfaces separated by a thin liquid layer,

was that dust particles settling along the clearance might have an

adverse effect on the measurements. In our present study, however, the

solvate layer was bounded by one solid surface only, hence this object-

ion was no longer valid.

For one thing, individual dust particles will do no more than

create local distortions in the profile of the solvate layer. They

cannot affect the average thickness, as measured by the photometric

procedure described above. Moreover, local distortions of the inter-

ference picture caused by coarser dust particles can be seen under the

microscope. The new method, therefore, enabled us to check the surface

for the presence of dust. In most of our experiments, the absence of

dust particles could be verified on this basis alone. The finer dust

particles, on the other hand, are not visible under the microscope.

When present in the form of continuous coating, such particles could

create an illusion of uniform thickness, with respect to the solvate

layer. In our studies, however, the possibility of such dusting was
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virtually precluded. It is sufficient to point out that in working with

mica, scales of this material were split off under water and the virgin

surfaces were examined at once (while still in the same double-distill-

ed water), before they could come in contact with air. The hydrogen

bubbles, too, formed in this aqueous medium. In general, research work

on surface phenonena would not be possible if under our experimental

conditions the solid surface could become densely covered with dust.

It should be pointed ouit that studying solvate layers bounded on

both by liquid (rather than solid) surfaces would be of no advantage,

as far as the dust effect was concerned. 5 It would in fact render the

investigation more difficult, since surfaces of virgin purity would no

longer be available.

Nor could another property of liquid separation surfaces - their

perfect flatness - be considered an advantage in our method, since the

solid surfaces used were quite satisfactory, in terms of "smoothnessU

required for our procedure.

As the last possible objection, it may be questioned whether solvate

layer thickness yielded by our measurements were in effect equilibirm

thicknesses.

The following considerations will suffice to refute this objection.

1) The values obtained for h are easily reproducible.

2) If tbarriert formation has been prevented (see above), the

thickness h (at a constant pressure P) ceases to vary, after the

lapse of a certain time interval. The latter amounts to several

minutes for water and aqueous solutions, and to about one hour for

vaseline oil, whose viscosity is high. In such cases, observations

I rting as long as 24 hours fail to disclose any further thinning of

the layer. It is concluded that the resistance to the outflow of the

liquid, due to viscosity, retards the thinning out of the layer only
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by a few minutes (in the case of water). After that an equilibrium Is

reached between the external pressure acting upon the solvate layer

and the disjoining action, whereby the resistance is eliminated. The

same thing is demonstrated no loss convincingly for solvate layers of

vaseline oil. In the course of one-half to one hour the layer thickness

may be brought down below that of an aqueous solvate layer after a 2-

hour interval, despite the far lower viscosity of water.

3) As the pressure P acting upon a solvate layer increases the

thickness h decreases, and vice versa. It would then appear that a

layer having a thickness h could be obtained either by thinning out a

thicker layer or by thickening a thinner layer (in each case, through

appropriate variations of the pressure P). This confirms, at the same

time, that the observed thickness correspond to equilibrium values and,

furthermore, that the relationships obtained, namely P . P(h) (see

graphs in Figs. 10, 11 and 12) represent equations of state (equill-

brium isotherms) for the solvate layer.

Thus, all objections to our experimental technique, as discussed

above, should be-considered invalid.

7. Discussion of results. Effect of adsorption layers on solvation.

The final point to consider is whether the disjoining pressure P of

the solvate water (for the case of water) could be identified with the

repulsion of Ions carrying charges of the same sign, which form the

outer diffuse ionic layers adjacent to the two bondary separation

surfaces on either side of the layer. Measurements of the I-potential

indicate, in fact, that air bubbles as well as glass and mica surfaces

are charged negatively in water. The diffuse outer membranes of both

separation surfaces are thus found to be composed of ions carrying

charges of the same (positive) charge.
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It is easy to see - as shown also in the quantitative theory of

interaction of two surfaces 7carrying diffuse ionic layers (Ref. 15),

developed by B. Deryagin - that such repulsion becomes undetectable at

a distance several times greater that the effective thickness of the

diffuse layers d. For monovalent electrolytes, this distance is equal

to

d-- O.3 1w"-1, (13)

where o is concentration, in moles per liter.

For pure water, the value d may, in effect, be of the order of

0-4 -eck

Thus, in the case of pure water, the disjoining action can be.

ascribed, at least in part, to the presence of ion sheaths.

We have seen, however, that monovalent electrolytes (CI), in

concentrations up to normal, do not substantially alter the order of

magnitude of those h values at which the disjoining action is still

perceptible. Thickness d, on the other hand, decreases in this casep to

a value of 0.3-10-7 am, in accordance with eq. (13). It follows that

the disjoining effect cannot, under the circumstances, be traced back

to repulsion of two identically charged ionic layers. The existence of

cleavage in nonaqueous layers (vaseline oil, hexane) further indicates

that the nauture of this effect must be a very different one.

From measurements involving multivalent cations, it is seen however

that the ions apparently are adsorbed by the solid surface, causing its

dehydration, and may thus indirectly affect to a very great extent

both the thickness of solvate layers and their cleaving action.

Further evidence is furnished by measurements conducted on solutions

of oleic acids in vaseline oil, indicating that adsorption of surface-

active molecules (on steel) may likewise have a strong effect, In this
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case again the thickness and the cleaving effect of solvate layers are

increased; or, to put it another way, the solvation, as this term is

interpreted here, becomes intensified.

The above testifies also to the correotnes of a hypothesis advanced

by B. Deryagin as far back as 1933 (Ref. 16). According to this view,

adsorption layers may affect the adjacent liquid layers, by increasing

the thickness of the lyospheres or of the solvate layers. This, in

turn, influences the related phenomena, above all the stability of

colloids and dispersoids, which depends on the disjoining effect of

solvate layers. A more detailed discussion of this relationship will

be found in sections 8 and 9.

We thus arrive at an explanation (first proposed by B. Deryagin, in

the same year 1933: see Ref. 16) of the mechanism underlying the

effect of adsorption layers on the stability of disperse systems (for

instance, suspensions). P. Rebinder and his followers (Ref. 17) used

ample experimental material to investigate this effect.

The basic point, in our explanation, is that adsorption layers have

no direct effect on stability but influence it indirectly# through

solvate layers, whose essential properties (equation of state) they

affect. The same interpretation may be applied to other effects attri-

butable'to adsorption layers, such as their influence upon the volume

of precipitates, the swelling of colloids, or the dispersive power.

In a like manner, the effect of adsorption layers on stability may

apparently be related to lyophilic colloids. The part played by the

"third component' in ensuring the high stability of lyophiles will

thus be elucidated. In Section 9 we shall show that the above theory

can be expressed in the form of a quantitative relationship. On this

basis, the stability of colloids and dispersoids will be treated

mathematically, in a way consistent with experimental findings.
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8. Interaction of spherical micelles in a dispersion medium:

theoretical analysis 8

The disjoining action of solvate layers, in those specific manifes-

tations which are the subject of our experimental study, is associated

with plane-parallelism, i.e., with uniform thickness of these layers.

The science of colloids, on the other hand, is concerned primarily

with the effect of cleavage on forces emerging as colloidal particles

approach one another. But this is the case of a liquid layer of non-

uniform thickness enclosed between two convex surfaces (Fig. 17).

To pass from the first case to the second, it is however sufficient
)

to use an earlier formula derived by B. Deryagin for a general case in

his theory of particle adhesion (Ref. 18). This formula, in our esti-

mation, is of major significance for the problem of colloid stability

as well as many other Important problem of the theory of colloids. We

shall therefore show here the derivation of the formula for the simple

case of two spherical particles.

Let us begin by considering, once more, the case of a thin liquid

layer of uniform thickness. The very existence of disjoining action

indicates that isothermal thinning of the layer, from oo to h, being

a reversible process, consumes energy, which per unit area amounts to

F(h) f r(h) dA. (1.

*.k

We shall assume that the energy to be expended has been stored as

additional free energy of a liquid layer, and is consequently equal

to F(h). We shall call function F(h) the characteristic function of

the liquid layer, since it determines the equation of state P -- P(h)

of this layer. On the other hand, F(h) can be obtained directly from

our experimental data for P(h) by the method of graphic integration.



It is further assumed that when h = oo, the liquid layer is acted

upon by surface energies 6 of the two separation surfaces (taken to be

identical) by which it is bounded. Together with the additional free

energy, the total free energy, for a layer of small thickness h, will

be expressed as

(h)a=2e +F(h)' ' 9  (15)

At h- 0 the layer disappears, along with the bounding separatlon

surfaces. We now have

026 -+ F0),
hence,

F(O)=-2, (16)

Since for h = oo, F(h) 0 0, it follows'that in the case of a liquid

layer enclosed between two identical surfaces, the disjoining action,

which is equal to

h) -r( ).(17)

is either negative for any h value.- that is, the layer tends to

decrease spontaneously in thickness (Figs. 15 and 16, curves 1) --

F( ..

. .... . .....

2 ' 'o.

, •J~2

Fig. 15. Two basic shapes of the Fig. 16. Two basic shapes of an
characteristic function of a thin isotherm of the equation of
layer of liquid enclosed between state for a thin layer enclosed
two identical surfaces between two identical surfaces
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or else curves F(h) and P(h)intersect the abscissas (Figs. 15 and 16,

curves 2), so that ,P is negative for sufficiently small h values but

becomes positive when these values are large.

We see, therefore, that a disjoining action between two identical

surfaces will exist only if the conditions of the second case are

satisfied.

This observation is of importance for the problem of colloid

stability, but it will nct affect the formulas derived subsequently in

this section. The only fact of any importance to us, at the moment, is

that the expression for the free energy of a system containing a thin

liquid layer of thickness h includes a term

U'8Fh,(18)

which is a function of h, where S is the area of the layer.

H. h h

Fig. 17. The force of interaction of two
spherical particles in a dispersion
medium.

We shall next consider the case of two spherical particles of

radius r, separated by a liquid layer of nonuniform thickness (Fig.

17).

-36-



In this case, the nonuniform layer thickness changes slowly from

point to point, since the layer in bound everywhere by nearly parallel

portions of two surfaces. By generalizing eq. (18), the additional

energy of this layer (at least where its thickness is less than h.,

which is the radium of surface molecular action) 1O may at the first

approximation be considered equal to

U-MF(h) d.9

where the integral is taken over one of the two surfaces, bounding the

thin layer on one side.

To justify the use of this approximation in the case to be conside-

red, where a liquid layer is enclosed between two spheres of radius r,

it is necessary that r be large in comparison with h o . The portions of

the spherical surfaces separated by distances smaller than h0 will then

be not too distant from areas most close to one another (i.e., from

points A and A' in Fig. 17). In other words, these portions will be

'nearly parallel' to each other. (The normals to areas facing each

other will intersect at very small angles).

When applied to the case of two spheres, eq. (19) can be simplified

by use of the geometric theorem concerning zone areas measured upon a

spherical surface. The latter is divided into zones by planes perpen-

dicular to a straight line connecting the center 0 of the sphere with

the center 0' of another sphere. Taking dS in eq. (19) equal to the

area of one such zone, we can write, in accordance with the above

theorem:

dhdS - r 2
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Accordingly, integral (19) assumes the form

U-u" FXA) d. (20)

The upper limit can be taken equal to infinity without detracting from

the mathematical precision, because F(h) will equal zero beginning

with small h values.

The expression derived for U apparently represents the potential

energy of interaction of two spheres, which amounts to the work

that must be expended in the (reversible) motion of these bodies as

the distance between them is reduced from infinity to H.

From eq. (20) the force of repulsion N acting between the spheres

is determined, in accordance with the well-known theorem of mechanics:

OU j- F(He),P(hl)dh. (21)

It follows from the above that the force of interaction existing

between colloidal particles of any radius (not excessively small)sepa-

rated by any distance, can be determined by graphic integration of a

P(h) curve plotted directly from experimental data.

As pointed out earlier (see Secion 1), the widely accepted expla-

nation relating the stability of lyophilic colloids to a 'washout' of

the solvate layer, is not valid. It is, in fact, immediately evident

from equation (21), and even more so from Fig. 15, that this is not

so. The 'washout' of a solvate layer is expressed graphically by a

rradual decline of curve F(h), and also P(h), with increasing values

of h. At a given 6 value, the 'washout' in itself will not decrease

prtcile interaction (i.e., repulsion or attraction, depending on the
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sign of F(h) which is negative in the case of attraction). Rather, the

interaction is intensified, because the radius of action, for the

forces concerned, becomes lengthened. What accounts for this is that

the decrease of F(h) with increasing h values is slowed down in this

case,

The maximum value of the force of interaction, according to eq.

(15) and (21), will depend only on surface energy 6 available along

the boundary line separating the particle from the dispersion medium,

and will be al-ways negative, if 6 is in every case assumed to be

positive.

Therefore, a decrease in the action of forces of adhesion, which

leads to the stabilization of the system, cannot be related to a

'washout' of the solvate layer. More likely, it depends (at a given d)

on the change of sign for values F(h). When the respective curve (such

as curve 2 plotted in Fig. 15) intersects the abscissa, a portion of

it becomes positive, which corresponds to a decrease in activity.

To put it another way, stabilization of colloids is ensured by an

energy barrier that must be overcome as two particles approach each

other; i.e., some activation energy must be available to these

particles. In this case both the motion of particles drawing closer to

each other, and subsequently their adhesion, will be obstructed by a

kind of activation energy, with the result that a degree of aggrega-

tive stability will have been achieved. In the next Section the idea

will be elaborated and subjected to rigorous mathematic treatment.

9. Theory of slow coagulation and of stability of colloids

In the classic theory of rapid coagulation, developed by Snolu-

khovsky, coagulation velocity vo , equal to the decrease in the number

of particles per unit of time, is expressed by the following relation-

ship:
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ve=Sw Dr4, (22)

where ao is partial concentration (in cm3 ); D Is the coefficient of

particle diffusion; and r is the radius of particles.

In deriving equation (22) a condition Is assumed that characterizes.

rapid coagulation. When Ho  0 0, the particles, at each oollision, are

assumed to adhere to each other under the action of forces of molecular

attraction. When Ho> 0, on the other hand, there are presumably no

forces acting between the particles. In other words, the radius of

action, for surface forces, including the forces of adhesion, is taken

to equal zero. At the same time, the probability of adhesion, at each

collision - i.e., the efficiency of the acting forces - is assumed

equal to unity.

That the second asstvmption is correct, was confirmed by direct

observation (Ref. 19) for aerosols whose cr 10 -- 10-'cu

It was shown theoretically (Ref. 20) that in the case of an aqueous

dispersion medium, the efficiency of a single collision must be much

less than unity if coagulation is to be slow; i.e., if its rate is to

be appreciably lower than the value vo obtained from eq. (22).

This refutes the view held by Smolukhovsky, who thought that the

velocity of slow coagulation must be proportional to the efficiency of

collisions-, as defined above.

On the other hand, the very concept of 'probablility of adhesion'

at collision, even when associated with a correct approach to the

problem of coagulation, testifies to our ignorance of the cause, or

the mechanism, of colloid stability. It means,. also, that no effort is

mrde to develop a theory of stability, inasmuch as nothing is said

about the possible factors controlling the probability of adhesion.
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Moreover, if the particles are sufficiently large in comparison with

molecular dimensions, it can hardly be expected that, at HO = 0,

'chance factors' might be able to hinder adhesion, reducing efficiency

at collision to a level appreciably below unity.

Our purpose, however, is to develop a theory of slow coagulation as.

related to stability of colloids. With this in mind, we shall assumes*

for the case where Ho = 0, that the particles always become aggregated

(i.e., efficiency at collision equals unity). At the same time, the

radius of surface action will no longer be assumed to equal zero. In

estimating particle interaction, we shall make use of results obtained

in the preceding Section.

,Thus, if the act of collision is identified with the case where

HO = 0, collision efficiency will equal unity. If, however, the act of

collision is identified with the case where the particles are separated

by a clearance Ho - ho, collision efficiency may be considerably less

than unity, under conditions of "cleavage". The probability of adhesion

can be precalculated, for this case, on the basis of the law of par-

ticle interaction.

To calculate the velocity v of slow coagulation, taking account of

particle interaction, we shall use the formula

'."_.. _. .(23 )

where U(Ho ) is the potential energy of interaction between two par-

ticles, which equals the energy expended as they move toward each

other, from an infinite distance to a distance Ho; k is the Boltz-

mann constant; and T is the absolute temperature.



Formula (21) was derived (Ref. 21) as a generalization of Smolu-

khovsky's equation .(22) for the case of interacting particle. (charged

particles of aerolos).

For our purposes, the terms 'stability' of a colloidal system is

best interpreted as a value L which is the reciprocal of coagulation

velocity vS

U. ' (2k)

From eq. (22), (23) and (24) we have:

1 9 (25)

For the case where U(Ho ) > 0, the above expression signifies an

increase in the stability of the system, associated with cleavage and

the characteristic function:

=:tL~q0.H6 'iwfdffo P(r4)dj0 (26)

or, integrating in parts:

U(H.)" V, r P (C - Be) 4r (27)

By treating graphically the experimental curve P(Ho), we can now

determine U(H o ) for different r values, and next the value

L-.



We shall cite here the results of such calculations obtained for

a water-glass system.

A distinction must first be made however, insofar as the disjoining

effect is concerned, between two cases. In the first case, a thin

liquid layer is bounded by a solid body on the one side and by gas on

the other. In the second, which is the case in our experiments, the

same type of layer is enclosed between two identical solid bodies. The

cleaving action manifested in the latter case is the only one that is

of importance for the theory of coagulation.

To complete our calculations, we shall assume the disjoining action

in the second case to be twice as strong as in the first. This means

that the respective functions P'(h) and F'(h) can be obtained for the

second case by doubling the P(h) and F(h) values, based on-direct

measurements, relating to the first case. Such an assumption cannot of

course be considered correct, except as a rough approximation. Strictly

speaking, it is justified only as an aid in computing at least the

order of magnitude, for the stabilizing action of solvate layers.

Function U(Ho ) for the value r = l0 - 5 cm is plotted in Fig. 18, by

use of eq. (26), after doubling the function values, as indicated

above.

It is seen from the graph in Fig. 18 that for H&<O-cm U>7.10-" •

Since at room temperature kT-4.10-16 , it follows that for H <10 " C

the ratio U will be greater than 175. In this case, for r - 10 - 5 cm,

expression (25) will yield the inequality

L >-i -> (28)

Z4 Lo

In pure water the system, as follows from the above, will be

absolutely stable, or nearly so, at r> l0 -5 cm.
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Fig. 18. Potential interaction energy of mutual_
repulsion of two glass spheres, r - lO c,
in water, as a function of distance
separating their surfaces.
The energy values were computed by
recalculating an isotherm of the equation
of state, obtained experimentally'for a
water film on glass.

It will be noted that for lesser r values our calculalions become

inaccurate, since they are based on a formula that gives sufficiently

close approximation only for r values large enough as compared with

ho . This latter value, according to our measurements, is of the order

10-6 - 10-5 cm.

CONCLUSIONS

1. The current concepts relating to surface solvation are not

clearly defined, nor do they furnish a basis for quantitative

evaluation. The lack of a direct experimental approach is responsible

for the dearth of information on the properties and thickness of

solvate layers.

2. The most important property of such layers should be identified

with the disjoining action exhibited by a thin film of liquid separat-

ing two phases (two micelles; also, a solid or liquid phase and a gas

bubble).
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3. Quantitatively, this property is characterized by the dependence

of equilibrium disjoining pressure P on thickness h of a plane-parallel

layer. Function P f r(h) represents an Isotherm of the equation of

state for this layer.

. The proposed definition of solvation is consistent with convent-

ional views relating solvation to intense molecular interaction of a

disperse medium with disperse phase. This is demonstrated by calculat-

ions in which molecular interaction is assumed to be additive.

5. A method for deriving the equation of state for a solvate layer

has been developed by the authors. When applied to a wetting film

between a bubble and a solvated surface, it offers many advantages over

the procedure described in previous reports of the present series --

among these simplicity, ready elimination of the dust effect, the

possibility of working with small surface areas, etc.

6. When a gas bubble is pressed quickly against a solid surface, a

wetting film of nonuniform thickness corresponding to a state of non-

equilibrium is formed. The film grows thinner toward the edges.

7. If pressure is applied slowly, a film of uniform thickness

corresponding to a state of equilibrium will form after some lapse of

time.

8. The film thickness is a decreasing function of pressure exerted

upon the film by the gas contained in the bubble.

9. The above method was used to derive equations of state P = p(h)

for a water film on glass and mica, and for a film of vaseline oil on

steel.

10. When pressure P is of the order of 500 dynes/cm2 , the film has a

thickness of about 10 - 5 to 3.lo-5 cm. The surface effect is thus seen

to penetrate into the adjacent liquid layer, to a depth of many mole-

cular layers. This contradicts some of the views frequently voiced in
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the literature.

11. Addition of KCl to water, even in normal concentration, does

not affect the thickness of a solvate layer. This indicates that the

disjoining action cannot be identified solely with the mutual repulsion

of diffuse ion sheaths on both surfaces of the solvate film.

12. Trivalent cations such as AICI 3 exert a strong desolvating

action, whereby the wetting film thickness is reduced to an extremely

small value and complete wetting is limited to an incomplete process.

(contact angle, 2-30).

13. Addition of oleic acid to vaseline oil increases the thickness

of an oil film on steel to several times its original value. Thus,

direct experimentation confirms the hypothesis advanced back in 1933

by B. Deryagin, who believed that adsorption layers influence both the

thickness and disjoining action of solvate layers, thereby intensifying

solvation.

14. A simple mathematic conversion makes it possible to express the

disjoining action exerted by a uniformly thick layer of the disperse

phase in terms of r and the function P(h). In this case the dispersion

medium separates two adjacent spherical particles, or radius r (not

excessively small). Function P(h) expresses the cleaving action of a

layer having uniform thickness. The force of repulsion acting between

particles that are not too small was found to be directly proportional

to their radius.

15. A mathematical theory of slow coagulation related to stability

of colloids and dispersoids was developed, based on the equation for

the interaction of adjacent particles. According to this theory,

stability is determined-by the disjoining action, since the latter

causes the emergence of an energy barrier which hinders the contact

and adhesion of particles.
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16. Substitution of experimental values into theoretical expressions

derived by the authors reveals that the proposed concept of disjoining

action offers an adequate quantitative interpretation of the factors

determining the stability of collodis and dispersoids. The theory 4s

consistent with experimental results obtained for particles whose

radius is greater than l0-5 on, but cannot be applied to particles of

lesser size(see Paragraph 14i).

17. The proposed theory accounts for the effect of adsorption

layers - the third component - on the stability of colloids. These

layers are shown to intensify the disjoining action of diffuse solvate

layers, thus influencing stability. The mechanism underlying the action

of adsoprtion layers, as suggested back in 1933 by B. Deryagin, clari-

fies the influence of adsorption layers on the stability of suspensions

investigated by P. Rebinder and coworkers. It accounts, furthermore,

for a number of other effects exhibited by surface-active susbstances

(adsorptive lowering of hardness, investigated by the same authors;

the lubricating effect, etc.).

We wish to extend our thanks to V.P. Lazarev, member of the

laboratory staff, and to the head laboratory assistant L.S. Lebedeva,

for the assistance rendered us in carrying out the measurements.
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FOOTNOTES

1. Reported at the Conference of the Chemistry Group, Academy of Scien-

ces USSR, on lyophilic colloids, May 9, 1937.

2. Previous reports: I. B. Deryagin. Zhurnal fizicheskoy khimii, 3,
29 (1932); Zs. f. Phys., 34, 657 (1933); II. B. Deryagin. Zhurnal

fizicheskoy khimii, 5, 379 (1934); Phys. Zs. d. Sowietunion, 4, 431

(1933); III. B. Deryagin and E. Obukhov. Zhurnal kolloidnoy khimil,
1, 385 (1935); Acta Physicochemica URSS, 5, 1 (1936); IV. B. Derya-

gin and M. Kusakov. Izvestiya Akademii Nauk SSSR, Seriya khmlcheskaya,

741 (1936).

3. The above assumption, if accepted, would limit considerably the
general applicability of the theory, since it leaves out of considerat-

ion that the energy of interaction between two molecules may also
depend on their orientation. (This is especially clear in the case of

dipole molecules). Such orientation is influenced by other molecules,

particularly the neighboring ones. The existence of distinct molecule

orientation patterns has been proven, and shown to be a major factoi

in the eisjoining action. A portion of the free energy possessed by a
two-micelle system depends on the diffuse ionic layers, and cannot be

estimated by the Laplace-Gauss method. For this reason, the subsequent
discussion will not be in any way restricted to such conditions as are

imposed by this assumption. Its purpose was merely to demonstrate that

a relationship exists between the disjoining action and the intensity

of interaction of the solvating with the solvated phases.

4- Studies on a wetting film were also conducted by Academician A.N.
Frumkin and coworkers (Ref. 11), but in their case it was a film formed

between a hydrogen bubble and mercury. The thicknesses were not measu-

red directly, but were determined by an interesting indirect method.
The main distinction between these experiments and ours consisted

in the following. Our studies were concerned principally with the

equation of state for a wetting film - i.e., with the disjoining effect

as a function of thickness (under conditions of complete wetting). A.N.

Fmkin and coworkers, on the other hand, were interested mainly in

the thickness of the wetting film and the contact angle formed by the

bubble, under conditions of incomplete wetting. Their data were obtai-

ned for varying values of mercury polarization, irrespective of the

pressure within the bubble.

It might be added that the thicknesses obtained for a water film on

m ercury were considerably lower than in our studies, reaching a value

of 10 m/ only in cases of strong mercury polarization. This is under-

standable, since the nature of a mercury surface is quite different

from that of hydrophilic mica, or glass. The need for strong polariza-

tion suggests further that the nature of phenomena subjected to inves-
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tigation was not identical In the two cases.

5. Such a study was undertaken by one of us, in collaboration with
L.N. Bronstein, at the All-Union Institute for Experimental Medicine,
Department of Biophysics.
6. Thus, the objection raised by Professor S.M. Lipatov during a dis-

cussion of our report is fully refuted. In the opinion of Professor
Lipatov, the validity of results obtained in this type of experiments

on solid surfaces may be questioned in all cases.
7. See the report by B. Deryagin, published in this issue.
8. Theoretical calculations, in this and the following sections, have
been performed by B. Deryagin.
9. From eq. (15) it is seen that function F(h) indicates the extent of
deviation from additivity, for surface energies possessed by separat-
ion surfaces bounding a thin liquid layer.

10. The radius of surface molecular action will be taken to mean that
thickness of the layer which, if exceeded, will render F(h) and P(h)

negligibly small.

ll.' More exactly, the additional free energy possessed by the liquid
layer separating these spheres.
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